Third harmonic generation from mid-IR to near-IR regions in a phase-matched silicon-silicon-nanocrystal hybrid plasmonic waveguide.
نویسندگان
چکیده
The conversion efficiency of third harmonic generation (THG) from mid-IR (3600 nm) to near-IR (1200 nm) regions in a silicon-silicon-nanocrystal hybrid plasmonic waveguide (SSHPW) was calculated. The required modal phase-matching condition (PMC) between the 0-th mode at fundamental wave (FW) and the 2-nd mode at third harmonic (TH) is achieved by carefully designing the waveguide geometry. Benefiting from the hybridized surface plasmon polariton (SPP) nature of the two guided modes, the SSHPW is capable of achieving both high THG nonlinear coefficient |I₆| and reasonable linear propagation loss, thereby resulting in large figure-of-merits (FOMs) for both FW and TH. According to our simulation, THG conversion efficiency up to 0.823% is achieved at 62.9 ����m SSHPW with pump power of 1 W.
منابع مشابه
Efficient second harmonic generation from mid-infrared to near-infrared regions in silicon-organic hybrid plasmonic waveguides with small fabrication-error sensitivity and a large bandwidth.
We theoretically investigate the quadratic nonlinear property of a silicon-organic hybrid plasmonic waveguide with a thin polymer layer deposited on top of a silicon slab and covered by a metal cap. Due to the hybridization property of the waveguide modes, efficient phase-matched second harmonic generation (SHG) from mid-infrared (IR) (~3.1 μm) to near-IR (~1.55 μm) wavelengths are achieved wit...
متن کاملLow loss coupler to interface silicon waveguide and hybrid plasmonic waveguide
A metallic coupler is proposed to interface a silicon on insulator (SOI) waveguide with a narrow hybrid plasmonic waveguide (200× 200 nm). The device operation is investigated and optimized to attain the best tradeoff between the mode confinement and the propagation loss. Calculations reveal that a high confinement and low loss of the energy is achieved from a silicon slab waveguide into the di...
متن کاملHighly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics.
We theoretically investigate the possible increase of the second harmonic generation (SHG) efficiency in silicon compatible waveguides by considering an asymmetrical plasmonic slot waveguide geometry and a χ((2)) nonlinear polymer infiltrating the slot. The needed phase matching condition is satisfied between the fundamental waveguide mode at the fundamental frequency (FF) and second-order wave...
متن کاملNonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared
Group IV photonics hold great potential for nonlinear applications in the nearand mid-infrared (IR) wavelength ranges, exhibiting strong nonlinearities in bulk materials, high index contrast, CMOS compatibility, and cost-effectiveness. In this paper, we review our recent numerical work on various types of silicon and germanium waveguides for octave-spanning ultrafast nonlinear applications. We ...
متن کاملPlasmonic enhanced two-photon absorption in silicon photodetectors for optical correlators in the near-infrared.
A high-density array of plasmonic coaxial nanoantennas is used to enhance the two-photon absorption (TPA) process in a conventional silicon photodetector from a mode-locked 76 MHz Ti:sapphire laser over a spectral range from 1340 to 1550 nm. This enhanced TPA was used to generate an interferometric autocorrelation trace of a 150 fs laser pulse. Unlike second-harmonic generation, this technique ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 22 20 شماره
صفحات -
تاریخ انتشار 2014